Phytochemical and pharmacological profile of *Praecitrullus fistulosus*: An overview

Nidhi Tyagi*, Ganesh N Sharma, Bhirendra Shrivastava
ITS College of Pharmacy, Delhi Merrut Road Murad Nagar, Ghaziabad-201206 (UP)

Abstract
Many herbal remedies have been employed in various medical systems for the treatment and management of different diseases. During past several years, there has been growing interest among the usage of various medicinal plants from traditional system of medicine for the treatment of different ailments. Cucurbitaceae family is major source of medicinal agents since ancient time. Various plants parts including fruits of this family have been established for their pharmacological potential. In the series of Cucurbitaceae plants, *Praecitrullus fistulosus* is one of the excellent plants, gifted by the nature having composition of all the essential constituents that are required for normal and good human health. This review attempts to encompass the available literature on *Praecitrullus fistulosus* with respect to its pharmacognostic characters, chemical constituents, summary of its various pharmacological activities and traditional uses.

Keywords: *Praecitrullus fistulosus*, Cucurbitaceae, Phytochemical Profile, Pharmacological Profile

Introduction
Cucurbits belong to family *Cucurbitaceae* and commonly known as gourd, melon and pumpkin family. This family includes about 118 genera and 825 species. In India, a number of major and minor cucurbits are cultivated, which share about 5.6 % of the total vegetable production [1]. In the series of Cucurbitaceae plants, *Praecitrullus fistulosus* is one of the excellent plants, gifted by the nature having composition of all the essential constituents that are required for normal and good human health. *Praecitrullus fistulosus* is commonly known as Tendu in Punjabi, Tinda kaaya in Telugu, Kovaikkaai in Tamil and Indian round gourd in English [2]. It is a diffuse annual, creeping or climbing herb with stout stem and rounded fruits of the size of a small turnip, pale or dark green in colour with blackish seeds. The fruits are used as a vegetable [3].

Figure 1: *Praecitrullus fistulosus* plant
Origin and geographical distribution

Praecitrullus fistulosus is cultivated as a vegetable in India, Pakistan and Afghanistan. The origin is probably northwestern India, where wild types may still be found. In Punjab, Uttar Pradesh, Mumbai and Rajasthan it is quite important as a cultivated market vegetable. The Hindi name ‘tinda’ is commonly used in other parts of the world. In Africa it is cultivated locally, mainly in East Africa, as a vegetable for the Asian population. In Ghana and Kenya it is grown as an export commodity for the United Kingdom market. It is also grown on a small scale in the United States. It is sometimes grown on the edges of gardens or in river beds. Two types of tinda are usually grown, one with green fruits and the other with pale green fruits [3]. Tinda is mainly cultivated in the lowlands from sea-level up to approximately 1000 m altitude. It likes warm, sunny conditions of 25-30 °C at daytime and 18 °C or more during the night and performs less well in cooler and humid areas. In India it is either grown in the dry season (February to end of April) or in the rainy season (mid-June to end of July). Tinda prefers light or sandy soils where its roots can penetrate easily. Moderately fertile to fertile soil is required for early closure of the vegetative cover [5]. In case of prolonged drought, irrigation is required before ploughing. Fertilizer applications depend on the nutrient status of the soil. In general a fertilizer application at a rate of 50 kg N, 20 kg P and 20 kg K per hectare is needed. Watering 2-3 times per week is recommended during the dry season. One or two weedicides are required before the stems cover the soil, attained in 6-8 weeks after sowing. From this stage movement in the crop should be reduced to a minimum to avoid damaging the plants. Seeds are sown directly on ridges or on flat land after the soil have been prepared either manually or mechanically by ploughing, harrowing or ridging. Tinda is primarily grown as a sole crop. Three or four seeds are sown per hill at a depth of 2-3 cm, spaced at approximately 90 cm × 150 cm. The seedlings are thinned to one or two per hill at 3-4 weeks after sowing when they have 2-4 true leaves. This leaves a plant population of about 10,000 plants per ha. The range of diseases that can be seen in tinda corresponds closely with that of watermelon. The most serious fungal diseases are downy mildew (*Pseudoperonospora cubensis*) and to a lesser extent powdery mildew (*Erysiphe cichoracearum* and *Sphaerotheca fuliginea*), which can be controlled by spraying a carbamate fungicide. *Choanephora cucurbitarum* causes wet rot of the fruit and another major disease of the fruit is anthracnose caused by *Colletotrichum gloeosporioides*. These diseases may be controlled chemically, e.g. by a weekly spraying with fungicides such as benomyl for 3-4 weeks. There are also several virus diseases that can cause severe fruit abortion, defoliation and fruit distortion. These viruses are usually transmitted by aphids (*Aphis spp.*), thrips and white flies (*Bemisia tabaci*). Virus infections can be reduced by spraying appropriate insecticides and by early planting before the heavy rains. The most serious pests are melon fruit fly (*Dacus spp.*) and leaf beetles (*Epilachna chrysomelina*), which can be controlled with insecticides. Tinda is harvested at the nearly mature green stage when the fruit has a diameter of 10-12 cm and the seed is still soft. Harvesting can take place about two weeks from fruit set, depending on prevailing moisture and temperature conditions. The fruit stalk is cut short to avoid damage to neighboring fruits. Upto 4 fruits of about 500 g each can be harvested per plant. In India, an average yield of 10 t/ha is reported [4]. Tinda is also affected by several insect pests. In the seedling stage, roots are damaged by red pumpkin beetle (*Raphidopalpa foenicollis*). The foliage is attacked by sap-sucking insects, viz. aphids, jassids and mites, although in milder forms. The tender fruits are punctured and damaged by the fruit fly (*Bacus cucurbitae*). Control of downy mildew, insects and vectors of viruses of tinda is obtained through a package involving spray of sevin (0.2) about 15-20 days after sowing and thereafter mixed spray of dithane M-45 and rogor or thiobendox. Downy mildew can be controlled by seed treatment with bassivol or vitavax (2 g/kg seed); karathane (0.05%) is effective against powdery mildew. The control of red pumpkin beetle may also check the spread of powdery mildew as the beetle is a source of secondary infection [3]. *Praecitrullus fistulosus* may be a useful source of resistance to whiteflies for the improvement of watermelons [6]. Synonyms of different species of tinda are *Citrus fistulosus* (Stocks), *Praecitrullus fistulosus* (Stocks), *Citrus lanatus*, *Citrus vulgaris* var *fistulosus* (Stocks), *Colocynthis citrullus* var *fistulosus* (Stocks) [5].

Taxonomic classification

- **Kingdom**: Plantae
- **Order**: Cucurbitales
- **Family**: Cucurbitaceae
- **Subfamily**: Cucurbitoideae
- **Genus**: Praecitrullus
- **Species**: Fistulosus

Common name: Tinda

Reported characteristic of Praecitrullus fistulosus

Leaves

Leaves are alternate and usually palmately 5-lobed or divided, stipules are absent. Leaves are springing pinnatifid, lamina sparsely hispid all over, densely hispid on veins and veiinlets of under surface, margin minutely denticulate, apparently entire, young leaves villous to densely hispid. *Probract spathulate* are 0.8 cm long.

Flowers

Flowers are actinomorphic and nearly always unisexual. The perianth has a short to prolonged epigynous zone that bears a calyx of 3-6 lobes and 3-6 petals or more frequently a 3-6 lobed sympetalous corollas. The androecium is highly

Nidhi Tyagi, E-mail: nidhityagi029@gmail.com

30
variable, consisting of basically 5 distinct to completely connate stamens that frequently are twisted, folded or reduced in number. The gynoecium consists of a single compound pistil of 2-5 carpels, generally with one style and as many style branches or major stigma lobes as carpels, and an inferior ovary with one locule and usually numerous ovules on 2-5 parietal placentae or 3 locules with numerous ovules on axile placentae.

Fruit

The fruit is a type of berry called a pepo by Gerald Carr. The fruit is approximately spherical and 5-8 cm in diameter. Fruit is about the size of a small turnip, depressed at each end, hispid when young afterwards glabrous [5].

Reported taxonomic position

Praecitrullus fistulosus having a chromosome number of 12. This taxon was earlier considered as a botanical variety of watermelon, Citrullus lanatus (x=11). Pangalo, however, identified distinct morphological and cytological differences between C. vulgaris var. fistulosus (tinda) and C. lanatus (syn. C. vulgaris). There is now general agreement among botanists and cytologists in that round melon requires a separate taxonomic status from watermelon and suggested a separate species status for round melon in the genus Citrullus. However, many other scientists are of the opinion that round melon should be put in a different genus, separate from Citrullus. It was the opinion that round melon with x=12 should be placed in the genus Cucumis, along with C. melo whose chromosome number is also 12. However, histological studies and analysis of leaf phenolics brought out distinct differences between the two taxa. Tinda is not crossable with either watermelon or muskmelon, but isozymes provided additional evidence for comparison of the two species. Round melon was compared with watermelon and muskmelon for two enzyme systems, peroxidase (PRX) and glutamate oxaloacetate transaminase (GOT). Polyacrylamide gel electrophoresis was carried out at 5 °C, using vertical slab gels and a constant current of 40 mA per slab. The gel buffer for all analyses was pH 9.0 tris-chloride, and the electrode buffer was pH 8.3 tris-glycine. Bromophenol blue (0.2%) in imidazole buffer (pH 7.0) was used as a tracer dye, and relative mobility (Rm) was calculated. Peroxidase analyses were made on roots and hypocotyls of 4-5 week old seedlings, with gel concentration of 7% acrylamide and staining. Glutamate oxaloacetate transaminase analyses were made on 3-4 day old seedlings, with 9.5 acrylamide gel concentration and staining technique. Seven peroxidase isozymes were found at Rm 0.01, 0.04, 0.11, 0.15, 0.44, 0.47, 0.76, different in electrophoretic mobility from the six isozymes found in Citrullus lanatus (Rm=0.07, 0.12, 0.19, 0.43, 0.54, 0.57) and the eight isozymes of Cucumis melo (Rm=0.05, 0.15, 0.443, 0.48, 0.52, 0.56, 0.61, 0.73). In the GOT zymogram, the three isozymes of Praecitrullus (Rm=0.13, 0.26, 0.30) were different from the two found in Citrullus lanatus (Rm=0.22, 0.25) and the four isozymes found in Cucumis melo (Rm=0.17, 0.23, 0.34, 0.38). Thus, it was found that there was no similarity of Praecitrullus with Citrullus lanatus or Cucumis melo for PRX or GOT, similarity between C. lanatus and C. colocynthis for GOT and PRX zymograms. Comparing Praecitrullus with Cucumis melo, it was found that the two species did not have any PRX or GOT isozymes in common. The isozyme at GOT, which was present in the 12 Cucumis species analyzed was absent in Praecitrullus. Thus, round melon should be placed in the genus Cucumis. The Indian round melon or 'tinda' is unrelated to and different from muskmelon and watermelon [7].

Reported phytoconstituents

The tinda fruits (per 100 g) have water (93.5 g), energy 89 kJ (21 kcal), protein (1.4 g), fat (0.2 g), carbohydrate (3.6 g), fibre (1.6 g), Ca (25 mg), Fe (0.9 mg), P (24 mg), carotene (13 μg), thiamin (0.04 mg), riboflavin (0.08 mg), niacin (0.3 mg), ascorbic acid (18 mg) [8]. Thiamin (0.04 mg), riboflavin (0.08 mg), niacin (0.3 mg), copper (11 ppm), nikel (<0.006 ppm), lead (<0.015 ppm), zinc (34 ppm), cobalt (<0.009 ppm), cadmium (<0.0008 ppm), chromium (<0.003 ppm), sodium (4 ppm) [9]. Seeds and kernels contain (52.8) and 37.8%, respectively of fatty oil with the following characteristics: [4]1-1.4758; saponification value, 192.5; and iodine value, 126.5. The fatty acid composition of oil is: myristic, 1.74; plmitic, 11.85; stearic, 10.70; oleic, 13.5; linoleic, 50.80%. The oil free-kernel has been found to contain protein in the range of 60 to 70% [3].

Reported Levels of seed proteins in Citrullus and Praecitrullus accessions

Variation among 17 accessions of Citrullus lanatus from different geographic regions and interspecific relationships of six taxa of Citrullus and Praecitrullus were studied using electrophoretic patterns of their seed storage proteins. Globulins, the salt soluble proteins, represented the major fraction with their proportion varying between 56.6% and 67.0%. These were followed by albumins (16.6-20.8%) and glutelins (13.5-18.5%) with prolamins as the lowest (2.2-4.1%) of the four fractions. Two-dimensional gel electrophoresis under non reducing conditions in the first dimension and reducing conditions in the second revealed disulfide-bonded subunit pairs of molecular weight 53, 52, 50 and 41 kDa, unlike the single subunit pair generally reported in different cucurbits, each consisting of a large and a small subunit. In the UPGMA dendrogram based on poly peptide patterns, the occurrence of C. lanatus var. lanatus, C. lanatus var. citroides and C. lanatus accession PI 482318 in one sub cluster suggested that phylogenetically C. lanatus var. citroides and C. lanatus var. lanatus are closely related. The recently described annual wild species, Citrullus rehmii, occurred independently nearest to the subcluster of

Nidhi Tyagi, E-mail:- nidhityagi029@gmail.com
these cultivated and wild taxa. *Citrullus colocynthis*, the perennial wild species occurred farther from this cluster showing relatively more genetic distance from the watermelons. *Pracitrullus fistulosus* was out clustered and appeared genetically distant from all the *Citrullus* taxa; this supported its placement in a separate genus unlike its nomenclature as a botanical variety of watermelon or as a separate species of *Citrullus* proposed in certain earlier studies [5].

Figure 2: Structure of riboflavin, thiamine, ascorbic acid and niacin

Traditional uses *Pracitrullus fistulosus* may be a useful source of resistance to whiteflies for the improvement of watermelons. The immature fruits are used in rayata or vegetable curries. The seeds of tinda are roasted and consumed in the same way as watermelon or egusi seeds. In India tinda is used as fodder and in medicine. The entire immature fruit is used as a cooked vegetable. In India the fruits are also pickled and candied [9].

Medicinal uses *Pracitrullus fistulosus* is used for anthelmintic [5] and antioxidant activity [10]. The glucose regulating role of three vegetable of *Cucurbita pepo*, *Cucumis sativus* and *Pracitrullus fistulosus* peels have been study [11].

Reported pharmacological activities of Pracitrullus fistulosus

Bollavarapu et al, (2016) evaluated the phytochemicals, enzymatic and non enzymatic antioxidant potential of *P. fistulosus* fruit extracts and proved that all extracts (Hexane, chloroform, ethyl acetate, aqueous) possess high antioxidant activity and free radical scavenging activity. In vitro antioxidant activities of all crude extracts were significant and comparable with the standard Ascorbic acid and BHTT and concluded that *P. fistulosus* could be a potential source of natural antioxidant that could have great importance as therapeutic agents in preventing oxidative stress-related degenerative diseases [12].

Luan and Hong, (2016) evaluated the antioxidant activity and anti-hyperglycemic potential of ethanolic extract of bottle gourd. The results showed that chelating activity was 80.02%, FRAP value was 92.84 µmol Fe²⁺/g and active radical scavenging which showed an IC50 was 49.50 µg/ml. The five different doses of ethanolic extract were treated by oral tolerance to mice body before oral glucose tolerance and blood glucose level was measured using glucose oxidase method. It concluded that inhibition percentage of ethanolic extract of bottle gourd at the dose of 400 mg/kg in glucose-induced hyperglycemic mice was effectively similar to standard drug glibenclamide [13].

Bhide et al, (2015) evaluated the anti-atherosclerotic and hypo-lipidemic effect of ethanolic extract of *Lagenaria siceraria* (EELS).result showed that the serum total cholesterol and triglyceride levels were reduced with 3 doses of EELS. The serum LDL and VLDL levels were significantly lowered with 3 doses of EELS and the effect was comparable to atorvastatin. It concluded that the EELS in doses in 160, 320 and 640 mg/kg showed a prominent anti-atherosclerotic effect in the mice (C57 BL6J) [14].

Essien et al,(2015) evaluated the the polyphenols content and antioxidant activity of *Lagenaria siceraria* seed oils of four bottle gourd cultivars (water jug-globose head, African wine gourd, speckled swan and water jug-hour glass shape). Result showed that the seed oils *L. siceraria* cultivars contain substantial amount of phenolic compounds especially flavonoids. The various oils exhibit significant antioxidant activity, DPPH radical scavenging, metal chelating and ferric reducing when compared with standard compounds [15].

Khan, (2015) evaluated biochemical profile of *Pracitrullus fistulosus* by induced mutagenesis to cause genetic variations, plant leaves were treated with different chemical and physical mutagens. Colchicine and ethidium bromide were used as chemical mutagens. Result showed that total carbohydrates, total proteins, phenolic compounds, antioxidant activity, reducing power, ascorbic acid and chlorophyll A, were found significantly (p<0.05) higher in colchicine 0.02% treated plants, while reducing sugars were
significantly (p<0.05) increases in colchicine 0.01% treated plants as compared to control plants. Total flavonoids, total flavonol, chlorophyll B and carotenoids were increases significantly (p<0.05) in plants treated with 0.05% Ethidium bromide while tannin content was increased significantly (p<0.05) in 0.10% Ethidium bromide treated plants as compared to the control plants [16].

Sharma et al, (2014) evaluated evaluation of anti diabetic and antihyperlipidemic potential of Praecitrullus fistulosus and Lagenaria siceraria. Result showed that Lagenaria siceraria ethanolic extract was found to posses highest anti diabetic and antihyperlipidmic potential among all. The addition of Lagenaria siceraria fruit extract was found to potentiate the effect of Praecitrullus fistulosus fruit extract [17].

Tyagi et al, (2014) evaluated ethanolic extract of Lagenaria Siceraria, Praecitrullus Fistulosus (50:50) fruit and their mixture for pharmacological screening and estimation of total flavanoid and total phenolic content and result showed that maximum phenolic and flavonoid content were found in ethanolic extract of Lagenaria siceraria [18].

Sood et al, (2012) evaluated the phytochemical screening and antimicrobial assay of various seeds extract of cucurbitaceae family (Momordica charantia (Karella), Cucumis sativa (Cucumber), Praecitrullus fistulosus (Tinda), Cucurbita pepo (Kaddu), Lagenaria siceraria (loki)). Results showed that all the seeds extracts were very effective against Serratia marcescens , E. coli, Streptococcus thermophilus, Fusarium oxysporium, Trichoderma reesei while some extracts showed no inhibition against Aspergillus niger (Cucumis sativa), Candida albicans (Praecitrullus fistulosus, Cucurbita pepo, Lagenaria siceraria). Phytochemical analysis of these plants confirms the presence of various phytochemicals like tannins, cardiac glycosides, terpenoids, carbohydrates, resins, saponins and phytosterols. While other phytochemicals like alkaloids, flavonoids, glycosides, steroidal terpenes and phlobatamins were found to be absent in all the extracts.

Gautam et al, (2011) evaluated petroleum ether and methanolic extract of Praecitrullus fistulosus for anthelmintic activity against pheretima posthuma. Two concentrations (50 and 100 mg/ml) of each extract were assessed, using determination of time of paralysis and time of death of the worms. Distilled water and albendazole were used as control and standard respectively and proved that the tested extracts of the Praecitrullus fistulosus exhibited significant anthelmintic activity at highest concentration of 100 mg/ml [5].

Gautam et al, (2011) evaluated the antioxidant effect of petroleum ether and methanolic extract of Praecitrullus fistulosus against free radical damage by standard method as DPPH (1, 1- diphenyl-2-picyrhidrazly) free radical model and proved that the fruits varying degree of antioxidant activity when compared with the standard ascorbic acid. The IC_{50} of pet-ether extract was found 18μg/ml and ethanol extract was 20 μg/ml [5].

Perveen et al, (2011) evaluated the pollen germination of Praecitrullus fistulosus L. in fresh and stored pollen upto 48 weeks at different temperatures i.e., -30 °C refrigerator (+4 °C), freezer (-20 °C, -30 °C) and freeze drier (-60 °C) and proved that pollen stored at low temperature showed better germination percentage as compared to pollen stored at +4 °C and fresh. Pollen stored at -30 °C (freezer) showed the highest germination percentage [20].

Dixit et al, (2010) evaluated the glucose regulating role of three vegetable peels from cucurbitaceae family. In preliminary study, male mice were used to study the effects of ethanolic extracts of Cucurbita pepo, Cucumis sativus and Praecitrullus fistulosus peels and were studied at 250 and 500 mg/kg for 15 days in the alterations in serum glucose and in hepatic lipid peroxidation (LPO). In the pilot experiment, the effective and safe concentration of each peel was administered (p.o.) for 10 consecutive days and then on 11th and 15th days alloxan was administered along with peel extracts. At the end, alterations in serum glucose, insulin, triiodothyronine, thyroxine, total cholesterol, triglyceride, high density lipoprotein, low density lipoprotein, very low density lipoprotein, hepatic lipid peroxidation, superoxide dismutase and catalase were studied. All the three peel extracts nearly reversed most of these changes induced by alloxan suggesting their possible role in ameliorating diabetes mellitus and related changes in serum lipids. However, Cucurbita pepo peel was found to be the most effective. Total polyphenols, flavonoids and ascorbic acid contents of the test peels were also estimated, which appear to be associated with the observed anti diabetic and antioxidative potentials [21].

Hussain et al, (2010) evaluated the eight vegetable species viz., Solanum melongena, Trianthema portulacastrum, Abelmoschus esculentus, Spinacia oleracea, Praecitrullus fistulosus, Luffa acutangula, Cucurbita moschata and Cucumis sativus for their nutritional values using standard techniques for proximate, macro and micronutrient analysis. In proximate analysis, ash, carbohydrate, proteins, fiber, fats and moisture (both dry and wet) were assayed while Cu, Ni, Zn, Pb, Co, Cd, Fe, Cr, Ca and Na were evaluated in micronutrients analysis using AOAC methods and atomic absorption spectrometric techniques. The species showed variable results in proximate analysis, however, Cucurbita moschata have revealed higher percentage of carbohydrates, fibers, and energy values. The results showed that Trianthema portulacastrum (a wild vegetable) had the highest concentrations of the micronutrients like Cu, Zn, and Fe compared to the other seven species while it had highest concentration of Ca. Proximate and nutrient analysis of such wild and cultivated vegetables can help us to determine the
health benefits achieved from their use in marginal communities [11]. Levi et al, (2010) evaluated that the taxonomic classification of P. fistulosus is incomplete and for many years it has been considered a close relative of watermelon and was previously classified as Citrullus lanatus subsp. fistulosus (Stocks). Here, they used two sets of DNA markers to assess the genetic similarity of P. fistulosus in relation to Citrullus spp. (including Citrullus lanatus subsp. vulgaris, C. lanatus subsp. lanatus, Citrullus group also known as C. lanatus (Thunb.) citroides (Bailey) and C. colocynthis (L.) Schrad.), Cucumis spp. (including C. melo, C. sativus, C. anguria, C. meeusei, C. zeyheri), Benincasa hispida (Thunb.) Cogn., Lagenaria siceraria (Mol.) Standl. and Cucurbita spp. (including C. moschata Duchesne and the winter squash C. maxima Duchesne). The first marker set comprised 501 markers that were produced by 38 primer pairs derived from watermelon expressed sequenced tags (ESTs) containing simple sequence repeat (SSR) motifs (designated as EST-SSR primers; produced 311 markers), and by 18 primer pairs derived from ESTs that do not contain SSR motives (designated here as EST-PCR primers; produced 190 markers). The second marker set comprised 628 markers that were produced by 18 sequence related amplified polymorphism (SRAP) primer pairs. The phylogenetic data indicated that among these cucurbit species, the wax gourd B. hispida is the closest to the P. fistulosus. Pollen observations, using light microscopy, indicated that each of the cucurbit genera examined here has unique pollen morphology. The Cucurbita spp. have globular pollen grains with a stigmatic surface. The L. siceraria has polygonal pollen grains with symmetrical boundaries, while the Citrullus spp. and Cucumis spp. have ovular (conical) and triangular shaped pollen grains (respectively). The B. hispida and P. fistulosus have spherical or semispherical pollen grains. These pollen features appear to be in agreement with the phylogenetic relationships of these two species based on DNA markers. Analysis with 12 SRAP primer pairs revealed low genetic diversity among 18 United States plant introductions (PIs) of P. fistulosus, indicating the need to expand the germplasm collection of this cucurbit crop [22]. Singh et al, (2010) evaluated the variation among 17 accessions of Citrullus lanatus from different geographic regions and interspecific relationships of six taxa of Citrullus and Praecitrullus using electrophoretic patterns of their seed storage proteins. Globulins, the salt soluble proteins, represented the major fraction with their proportion varying between 56.6% and 67.0%. These were followed by albumins (16.6–20.8%) and glutelins (13.5–18.5%) with prolamins as the lowest (2.2–4.1%) of the four fractions. Two-dimensional gel electrophoresis under nonreducing conditions in the first dimension and reducing conditions in the second revealed disulphide-bonded subunit pairs of molecular weight 53, 52, 50 and 41 kDa, unlike the single subunit pair generally reported in different cucurbits, each consisting of a large and a small subunit. The occurrence of C. lanatus var. lanatus, C. lanatus var. citroides and C. lanatus accession PI 482318 in one subcluster suggested that phylogenetically C. lanatus var. citroides and C. lanatus var. lanatus were closely related. The recently described annual wild species, Citrullus rehmi, occurred independently nearest to the subcluster of these cultivated and wild taxa. Citrullus colocynthis, the perennial wild species occurred farther from this cluster showing relatively more genetic distance from the watermelons. Praecitrullus fistulosus was out clustered and appeared genetically distant from all the Citrullus taxa; this supported its placement in a separate genus unlike its nomenclature as a botanical variety of watermelon or as a separate species of Citrullus proposed in certain earlier studies [23]. Levi et al, (2005) evaluated that Praecitrullus fistulosus has mild resistance to whiteflies (Bemisia tabaci) and to determine genetic relatedness among those species, phylogenetic analysis [based on simple sequence repeat (SSR)-anchored (also termed ISSR), and randomly amplified polymorphic DNA (RAPD) markers] was conducted among PIs of P. fistulosus, Citrullus lanatus var. lanatus (watermelon), C. lanatus var. citroides and the wild Citrullus colocynthis. Phylogenetic relationships were also examined with Cucumis melo (melon), Cucumis sativus (cucumber), and wild Cucumis species including C. africanus, C. metuliferus, C. anguria, C. meeusei, and C. zeyheri. Wide genetic distance exists between Citrullus and Cucumis groups (8% genetic similarity). Phylogenetic relationships among Citrullus species and subspecies are closer (25–55% genetic similarity) as compared with those among most Cucumis species (14–68% genetic similarity). P. fistulosus appeared to be distant from both Cucumis and Citrullus species (genetic similarity between P. fistulosus and Cucumis or Citrullus groups is less than 3%). Although wide genetic differences and reproductive barriers exist among cucurbit species examined in this study, they are still considered as potential germplasm source for enhancing watermelon and melon crops using traditional breeding and biotechnology procedures [6]. Conclusion Tinda or round gourd is herbaceous plant having pointed hairy stem with curly long tendrils, belongs to the family Cucurbitaceae. The above collected information regarding the Praecitrullus fistulosus is revived to congregate the ethnobotanical, phytochemical and pharmacological information. Further evaluation needs to be carried out on in order to investigate the obscured areas and their practical clinical applications, which can be used for the interests of the mankind.
References

Conflict of Interest: None declared

Received: 08 April 2017, Revised: 05 May 2017, Accepted: 28 June 2017

Copyright © 2016-17 IJIHD, All rights reserved